Reduction of Clathrate Hydrate Film Growth Rate by Naturally Occurring Surface Active Components
نویسندگان
چکیده
منابع مشابه
Hydrate-phobic surfaces: fundamental studies in clathrate hydrate adhesion reduction.
Clathrate hydrate formation and subsequent plugging of deep-sea oil and gas pipelines represent a significant bottleneck for deep-sea oil and gas operations. Current methods for hydrate mitigation are expensive and energy intensive, comprising chemical, thermal, or flow management techniques. In this paper, we present an alternate approach of using functionalized coatings to reduce hydrate adhe...
متن کاملTetrahydroberberine, a pharmacologically active naturally occurring alkaloid.
Tetrahydroberberine (systematic name: 9,10-dimethoxy-5,8,13,13a-tetrahydro-6H-benzo[g][1,3]benzodioxolo[5,6-a]quinolizine), C20H21NO4, a widely distributed naturally occurring alkaloid, has been crystallized as a racemic mixture about an inversion center. A bent conformation of the molecule is observed, with an angle of 24.72 (5)° between the arene rings at the two ends of the reduced quinolizi...
متن کاملNMR/MRI study of clathrate hydrate mechanisms.
Clathrate hydrates are of great importance in many aspects. However, hydrate formation and dissociation mechanisms, essential to all hydrate applications, are still not well understood due to the limitations of experimental techniques capable of providing dynamic and structural information on a molecular level. NMR has been shown to be a powerful tool to noninvasively measure molecular level dy...
متن کاملInvestigation Of Hydrate Growth Rate On The Interface Between Liquid and Solid Film
Hydrate slurry has been reported to be a suitable secondary fluid for refrigeration and air-conditioning systems. The latent heat of CO2 hydrate is 387 kJ/kg under phase equilibrium condition of 7 °C and 30 bar. The utilization of CO2 hydrate slurry in air-conditioning systems is promising in improving the energy efficiency and shifting energy supply and demand load as well as relieving greenho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energy & Fuels
سال: 2017
ISSN: 0887-0624,1520-5029
DOI: 10.1021/acs.energyfuels.6b02942